

Section 5

Basics of Signal Processing

Eric Kelly
PIMS Data Analyst
Tal-Cut Company / NASA Glenn Research Center

Outline

- 1. Block Diagram of Data Stream
- 2. Motivation for Analog-to-Digital Conversion
- 3. Basic Concepts
 - processing depends on and impacts the Principal Investigator
- 4. Tradeoffs and Summary

Motivation for Analog-to-Digital Conversion

Computers

- Flexibility. Software does the digital signal processing.
- Take advantage of the full depth and breadth of processing tools available for this platform.
- Processing performance does not vary with temperature or time.

Reproducibility

No degradation when copying signal.

Other factors

connect

the dots

Sampling

has critical implications regarding the information our measurements contain

Analog Signal

Time

discretization

sampling - converting an analog signal to a discrete-time, continuous-amplitude signal

$$f_s = 1/\Delta t$$

sample rate (f_s) - frequency with which analog signal is sampled (samples per second)

Sampling

Real World (Analog) Signal of Interest

Sampling

sample it

Discretized Signal

Sampling

Antialias Filtering

pass without attenuation or amplification below cutoff frequency

Frequency response of a lowpass (antialiasing) filter

total attenuation above cutoff frequency

- Why does cutoff, f_c, matter?
 For acceleration data,
- besides sensor location, the cutoff frequency (f_c) is one of most important decisions you make. It should be greater than the highest frequency that is of interest or concern to you.
- Higher f_c means higher f_s , but limitations on the transmission bandwidth, storage, and processing resources put a limit on f_s .

antialias filtering - lowpass (bandlimit) analog signal to reduce effects of aliasing

cutoff frequency (f_c) - highest frequency of interest

Quantization

digitization

quantization - conversion of discrete-time, continuous-amplitude signal to discrete-time, discrete-amplitude signal

$$q = V_{fs}/(2^{b}-1)$$

$$b = # of bits$$

Quantization

Analog Signal

Time

"Significant"

some imprecision

even more imprecision

Encoding & Engineering Unit Conversion

Encoding - assigning unique codes to the quantized samples

 Engineering Unit Conversion - translation of encoded values to desired "final" representation

Tradeoffs and Summary

Analog-to-Digital Conversion - computer processing is the motivation

- 1. Antialias Filtering
 - lowpass filter leads to loss of high frequency information
- 2. Sampling
 - sample rate transmission, storage, and processing
 - discretization in time aliasing
- 3. Quantization
 - digitization of amplitude precision limited by number of bits
- 4. Encoding
- 5. Engineering Unit Conversion